

Third Semester B.E. Degree Examination, Aug./Sept. 2020 Fluid Mechanics

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define : Mass density, Specific gravity, Specific weight. Give the relationship between them. Also write their units and dimensions.
(08 Marks)
b. A closed tank contains 0.5 m depth of mercury, 2 m of water and 3 m of oil $(\mathrm{S}=0.6)$ with air above the oil. If the gauge pressure at the bottom of the tank is 196.2 kPa , what is the pressure of air at top of the tank? Also find absolute pressure if $\mathrm{P}_{\mathrm{atm}}=101.043 \mathrm{kPa}$.
(08 Marks)
OR
2 a. Define Absolute, Gauge and Atmospheric pressure. Give relationship between them through sketch.
(04 Marks)
b. One litre of crude oil weighs 9.6 N . Calculate specific weight, density and specific gravity.
(06 Marks)
c. A cube of 25 cm sides slides down on incline plane of $2 \mathrm{~V}: 3 \mathrm{H}$ with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The inclined surface is covered by 0.02 mm thick oil film of viscosity $2.2 \times 10^{-3} \mathrm{Pas}$. What is the weight of the cube?
(06 Marks)

Module-2

3 a. Distinguish between : i) Center of pressure and Center of gravity ii) Stream line and Path line iii) Convective acceleration and temporal acceleration.
(06 Marks)
b. A circular disc of diameter 0.75 m is immersed in a liquid of $\mathrm{S}=0.8$ with its plane making 30° with horizontal. The centre of plate is at 1.5 m below free surface. Calculate the total pressure and center of pressure.
(04 Marks)
c. The velocity vector for a 2 D flow is given by : $\vec{V}=\left[\frac{y^{3}}{3}+2 x-x^{2} y\right] i+\left[x y^{2}-2 y-\frac{x^{3}}{3}\right]$. Obtain the expression for stream function.
(06 Marks)

OR

4 a. Derive the continuity equation for a 3D flow using Cartesian coordinate system for steady incompressible flow.
(08 Marks)
b. The velocity vector in a fluid flow is $\vec{V}=4 x^{3} i-10 x^{2} y j+2 t k$. Find velocity and acceleration components at point $(2,1,3)$ when $t=1$.
(08 Marks)

Module-3

5 a. Derive an expression for discharge through horizontal venturimeter carrying water.
b. List the assumptions made during derivation of Bernoulli's equation.
(06 Marks)
c. Water is flowing through a tapering pipe having diameters 300 mm and 150 mm at section 1 and 2 which are 10 m above and 6 m below datum respectively. If the pressure at section 1 is 400 kPa and discharge is $40 \ell \mathrm{ps}$ determine velocity and pressure at section 2 . What is velocity at section 1 ? Neglect losses.
(06 Marks)

OR

6 a. Derive an equation for velocity of flow at a point using pitot tube.
(04 Marks)
b. 300 lps of water is flowing in a pipe of 30 cm diameter with a gauge pressure of $400 \mathrm{kN} / \mathrm{m}^{2}$. If the pipe is bent by 90°, find the magnitude and direction of force on the bend.
c. A horizontal venturimeter with inlet and throat diameter 25 cm and 15 cm respectively is used to measure discharge of water in a pipe. $\mathrm{C}_{\mathrm{d}}=0.98$. If the $\mathrm{U}-$ tube mercury manometer connected to it reads 30 cm level difference, find the discharge.
(05 Marks)

Module-4

7
a. Derive the expression $\mathrm{C}_{\mathrm{V}}=\frac{\mathrm{x}}{2 \sqrt{\mathrm{yH}}}$ with usual notations.
(06 Marks)
b. The head over rectangular notch is 90 cm and discharge is $300 \ell \mathrm{ps}$. Find the length of crest. $\mathrm{C}_{\mathrm{d}}=0.62$.
(04 Marks)
c. Give classification of orifices and mouth pieces.

OR

8 a. Derive an equation for discharge over a rectangular sharp crested weir.
(08 Marks)
b. A 25 mm diameter orifice discharges $22 \mathrm{~m}^{3}$ of water per minute when the head is 6 m . The diameter of jet at Vena - Contracta is 22.5 mm . Determine $\mathrm{C}_{\mathrm{c}}, \mathrm{C}_{\mathrm{d}}$ and C_{v}.
(08 Marks)

Module-5

9 a. Derive Darcy - Weisbach equation for head loss through a pipe.
(08 Marks)
b. A 0.5 m diameter and 100 m long pipeline carrying $0.5 \mathrm{~m}^{3} / \mathrm{s}$ of water is fitted with a valve at downstream end. Calculate the rise in pressure caused due to closure of valve in time :
i) 0.1 sec and
ii) 1 sec . Take sonic velocity $=1430 \mathrm{~m} / \mathrm{s}$.
(08 Marks)

OR

10 a. A pipe of 40 m length is connected to water tank at one end and discharges freely into the atmosphere at other end. For the first 25 m length from the tank the pipe is 15 cm in diameter and for remaining part, its diameter is 30 cm . The pipe is horizontal and water level in tank is 8 m above the center of pipe. Taking $\mathrm{f}=0.01$ in $\mathrm{h}_{\mathrm{f}}=\frac{\mathrm{FLV}^{2}}{2 \mathrm{gD}}$ and considering all losses, determine the discharge through pipe. Also sketch HGL and TEL.
(12 Marks)
b. Derive an expression for instantaneous pressure in the pipe due to gradual closure of value fitted at the end.
(04 Marks)

